

### Reactive Chemicals Hazard Investigation

#### Chemical Safety and Hazard Investigation Board

**Investigation Team:** 

Giby Joseph, Lisa Long, Kevin Mitchell, and

John Murphy (Lead Investigator)

Joint EFCOG/DOE
Chemical Safety Workshop
Washington, DC
October 23-25, 2001



### Outline

- CSB Mission
- Reactive Chemicals Hazard Investigation Background
- Impact of Reactive Chemical Incidents
- Reactive Chemicals Incident Case Histories
- Reactive Chemical Incident Data



### **CSB** Mission

Enhance the health and safety of workers and the public, and protect the environment by:

- Uncovering causes of accidental chemical releases
- Using findings and supporting research to promote preventive actions by both the private and public sectors



### Mission Objectives

- Investigate carefully selected major incidents involving hazardous chemicals at fixed facilities
- Produce high quality and timely investigation reports identifying root and contributing causes
- Conduct hazard, safety, and data studies designed to complement investigation report and recommendation activities
- Issues well-reasoned and precisely targeted recommendations
- Conduct effective advocacy activity for recommendations



### CSB Unique Authorities

- Not bound by regulatory definitions of chemicals or scope
- Performs root cause investigations
- Makes recommendations to Industry, Associations, or Other Agencies



### Morton Incident Review (9 Injured)

#### **KEY ISSUES:**

Internal Hazard Communication
Reactive Hazard Management
Process Safety Management

FINAL REPORT: August 2000



Morton International, Inc., Paterson, NJ (4/8/98)



### Hazard Investigation Objectives

- To examine the hypothesis that there are too many severe reactive chemical incidents.
- To determine the causes and impacts of reactive chemical incidents.
- To analyze existing reactive chemicals hazard management systems within the chemical industry (small, medium and large companies).
  - » Policies
  - » Practices
  - » Reactivity research capability
  - » Testing Program
  - » Process Engineering



### Hazard Investigation Objectives (cont.)

- To examine how OSHA/EPA are currently addressing reactive chemical hazards.
- To consider alternatives to using NFPA instability ratings for OSHA PSM application.
- Likely to develop recommendations to reduce the number and impacts of reactive chemical incidents.



#### **Reactive Chemical Incident**

**Definition** - A reactive chemical incident is a sudden event involving an uncontrolled chemical reaction with significant increases in temperature, pressure, and/or gas evolution that has the potential to or has caused serious harm to people, property or the environment.

- •Focus on events that have actually caused significant harm
- •Includes chemical manufacturing from raw material storage, through chemical processing to product storage
- •Bulk storage and handling facilities included
- •Excludes transportation, pipelines, labs, minerals extraction, mining, explosives manufacturing, pyrotechnic manufacturing, or military uses
- •Not intended to include simple combustion of fuel/air mixture



#### **Data Sources**

- Regulatory OSHA, EPA ARIP, EPA RMP
- Industry Associations Chlorine Institute
- Professional Societies IChemE, AIChE
- Insurance Industry Marsh McLennan
- Notification Database NRC
- News/Current Events Publications
- Topical Journals and Texts
- UK/HSE Major Hazard Incident Data
- Chemical Safety Board CIRC
- Safety/Loss Prevention Texts (various)
- Brethericks Reactive Chemical Hazards
- USE DOE Chemical Safety Reports
- NFPA-Fire Incident Data Organization (FIDO)
- USFA National Fire Incident Reporting Syst.
- EU/EC Major Accident Reporting System
- TNO Process Safety FACTS
- NTSB Hazardous Material Incident Reports

- Census of Fatal Occupational Injuries (CFOI)
- Awareness and Preparedness for Emergencies at Local Level (APELL)
- EPA's Acute Hazardous Events Database (Considered Only)
- Hazardous Substances Emergency Events Surveillance (HSEES) - (Considered Only)
- Mary Kay O'Connor PSC (Considered Only)
- EU/EC Community Documentation Centre on Industrial Risk (Considered Only)
- American Chemistry Council Process Safety Measurement System (Considered Only)
- API's Process Safety Database (Considered Only)
- CCPS Incident Database (NO ACCESS)



### **Impact of Reactive Incidents**

- 167 domestic incidents (1980 2001) in CSB data
- 108 fatalities in 48 incidents
- An average of 3 fatal incidents occur each year [1]
- An average of 9 injury-related incidents occur each year [1]
- No clear trends in number of events over past 10 years



### Consequences

- Primary impact is onsite, however reactive incidents can impact the public, and this has been shown to happen in approximately 30% of incidents.
- "Public impact" defined as known injury, evacuation, or shelter-in-place.
- Consequence of reactive incidents can include:
  - Fire/explosion,
  - Toxic Gas Release,
  - Hazardous Liquid Spill



### Consequences

• Reactive incidents can result in severe business impacts including property loss

| Property Damage     | Number of Incidents <sup>[1]</sup> |
|---------------------|------------------------------------|
| Loss Range          |                                    |
| \$ 10 MM - \$100 MM | 12+                                |
|                     |                                    |
| >\$100 MM           | 4                                  |
|                     |                                    |

[1] Data is intended to be illustrative, not comprehensive



### **Severe Reactive Incidents**

|    | Location                | <u>Date</u> | <u>Fatalities</u> |
|----|-------------------------|-------------|-------------------|
| 1  | Channelview TX          | 7/5/90      | 17                |
| 2  | Charleston SC           | 6/17/91     | 9                 |
| 3  | Sterlington LA          | 5/1/91      | 8                 |
| 4  | Lodi NJ                 | 4/21/95     | 5                 |
| 5  | Allentown PA            | 2/19/99     | 5                 |
| 6  | Port Neal IA            | 12/13/94    | 4                 |
| 7  | Auburn IN               | 6/28/88     | 4                 |
| 8  | Gulfport MS             | 6/2/82      | 3                 |
| 9  | Barceloneta Puerto Rico | 6/12/86     | 3                 |
| 10 | Belpre OH               | 5/27/94     | 3                 |
| 11 | West Helena AR          | 5/8/97      | <u>3</u>          |
|    |                         | Total       | 64                |



### **Other Notable Recent Incidents**

| Location      | <u>Date</u> |                  |
|---------------|-------------|------------------|
| Pasadena TX   | 6/23/99     | 2 Fatalities     |
| Bucks AL      | 9/4/99      | 1 Fatality       |
| Alamogordo NM | 8/6/99      | 1 Fatality       |
| Whitehall MI  | 6/4/99      | 1 Fatality       |
| Columbus OH   | 9/10/97     | 1 Fatality       |
| Pasadena TX   | 3/27/00     | 1 Fatality       |
| Patterson NJ  | 4/8 /98     | 9 Injured        |
| Baltimore, MD | 10/13/98    | 5 Injured        |
| Deer Park TX  | 3/29/00     | > 1000 Evacuated |



### April 21, 1995 Napp Technologies Lodi, NJ



Ed Hill, *The Record*Rich Gigli, *The Record* 

- Five Fatalities
- Approximately 300 evacuated
- Significant damage to the facility and surrounding businesses



## April 21, 1995 Napp Technologies Lodi, NJ Incident Description

- Napp was performing a toll blending operation
- The product was a commercial chemical mixture –
   ACR9031, a gold precipitating agent comprised of sodium
   hydrosulfite, aluminum powder, potassium carbonate, and
   benzaldehyde
- The most likely cause of the incident was the inadvertent introduction of water / heat into water reactive materials



### April 21, 1995 Napp Technologies Lodi, NJ Outcomes of the Napp Incident

- Raised questions regarding the use of the NFPA instability system for regulating reactives
- EPA/OSHA Joint Investigation recommended
  - Review the PSM and RMP lists to determine how reactives should be handled
  - Review the role of the MSDS in process safety information
    - » Don't use MSDS's beyond their intended guidelines
    - » Understand the limitations of MSDS's
- Unions petitioned OSHA for an emergency revision of standards on process safety management and emergency response



### May 8, 1997 Bartlo Packaging Inc. West Helena, AR



Rick McFarland, Arkansas Democrat-Gazette

- Three Fatalities
- 17 Injuries
- Significant Facility Damage
- Hundreds Evacuated
- Mississippi River and Major Roads closed to traffic for 12 hours



### May 8, 1997 Bartlo Packaging, Inc. West Helena, AR Incident Description

- Bartlo Packaging, Inc. (BPS) was an agricultural packaging facility
- Under tolling agreements, BPS was repackaging the pesticide Azinphosmethyl (AZM) 50W
- The most likely cause of the incident was decomposition of a bulk sack containing AZM 50W which had been placed against or close to a hot compressor discharge pipe. The heat from the pipe caused the material to decompose and give off flammable vapors which resulted in an explosion.



### June 4, 1999 Whitehall Leather Company Whitehall, MI



Lisa Medendorp, The Chronicle

- One fatality
- One injury
- 11 employees evacuated



### June 4, 1999 Whitehall Leather Company Whitehall, MI Incident Description

- Whitehall Leather Company operated a leathery tannery in Whitehall, Michigan
- The accident resulted from a truck load of hydrosulfide solution being transferred into a tank of ferrous sulfate solution. The two substances reacted to produce hydrogen sulfide which is a poisonous gas.



### February 19, 1999 Concept Sciences, Inc. Allentown, PA



Tom Volk, The Morning Call

- Five Fatalities
- Multiple Injuries
- Extensive damage to the building and surrounding buildings



### February 19, 1999 Concept Sciences, Inc. Allentown, PA Incident Description

- Concept sciences was distilling an aqueous solution of hydroxylamine and potassium sulfate
- The chemical involved in the explosion, hydroxylamine, is capable of rapid exothermic decomposition which can lead to explosive decomposition when confined.
- The explosion occurred while Concept Sciences was processing the first batch of material
- The process was in the final stage designed to distill off water from hydroxylamine solution to achieve 50% composition. Decomposition of concentrated hydroxylamine resulted in the explosion.



### March 13, 2001 BP Amoco Augusta, GA



- Three fatalities
- Localized unit damage



## March 13, 2001 BP Amoco Augusta, GA Incident Description

- BP Amoco was producing Amodel, a nylon polymer
- Material collected in a polymer catch tank decomposed yielding gas which generated pressure
- Three employees were in the process of opening the catch tank when the pressure was released
- Subsequent damage resulted in a second explosion and fire several minutes later



### March 13, 2001 BP Amoco Augusta, GA Root and Contributing Causes

- CSB is conducting a full root cause investigation of this incident
- The investigation has confirmed that this is a reactive chemical incident
- Root cause information will be detailed in the full CSB report



### **Industry Profile**

- Reactive incidents are not unique to the chemical manufacturing industry
- Bulk consumers/handlers of chemicals represent a significant portion of the problem.

| Type of Facility                  | Percent of Incidents |  |
|-----------------------------------|----------------------|--|
|                                   |                      |  |
| Chemical Manufacturing            | 60% +                |  |
|                                   |                      |  |
| Storage, Handling, Consumer Sites | Nearly 40%           |  |
|                                   |                      |  |



- Reactive incidents occur in many different types of equipment.
  - 25% occur in chemical reactor vessels
  - 22% occur in storage equipment



- The problem is represented by the diverse nature of Reactive Chemistry
  - Decomposition reactions
  - Acid/Base reactions
  - Water Reactive
  - Polymerization reactions
  - Oxidation reactions
  - Decomposition initiated by another reaction
  - Other (6 categories)
- The vast majority of reactive incidents involve known chemistry (90+%)



- There is a wide diversity of chemicals and chemical classes that can exhibit reactive chemistry.
- It is difficult to focus on any one/few classes of chemicals.
  - Acids
  - Monomers
  - Oxidizers
  - Water
  - Organic Peroxides
  - Bases
  - Inorganic/Metals
  - Hypochlorites
  - Others (38 Classifications)



- OSHA's PSM standard uses the NFPA's instability rating system to classify reactive chemicals
- A large percentage of incidents involve chemicals that are minimal reactivity hazards as per NFPA hazard rating systems and NFPA publications.
- Of the 167 incidents,
  - Approximately 88% involved chemicals which where not rated as NFPA 3's or 4's
  - Less than 50% involved chemicals rated as NFPA 1, 2, 3, or 4.



#### **Common Causes**

- Inadvertent mixing of incompatible chemicals represents a sizable portion of the reactive problem.
  - Nearly 40 % of incidents
- The classic Thermal Runaway still represents a smaller, but significant portion of the reactive problem.
  - Nearly 25% of incidents



### **Underlying Causes**

- Underlying Cause information found in only about 20% of data
- Most reactive incidents (nearly 60% where information available) occur due to underlying failures to <u>identify</u> <u>chemistry hazards</u> and/or conduct an adequate <u>Process</u> Hazard Evaluation.
- Examples:
  - Hazard Identification
    - » West Helena AR 5/8/97
  - Process Hazard Evaluation
    - » Lodi NJ 4/21/95
    - » Baltimore MD 12/13/98 (during Management of Change)



### **Underlying Causes**

- Many reactive incidents occur due to inadequate <u>procedures</u> for safe processing, storage, and/or handling of reactive chemicals
- Nearly 50% where information available
- Examples:
  - Whitehall, MI 6/4/99
  - West Helena, AR 5/8/97
  - Allentown, PA 2/19/99



### **Regulatory Aspects**

- CSB determined if the chemicals involved in the 167 incidents were covered by PSM or RMP
- Analysis was limited by insufficient knowledge of chemical concentrations, quantities, or other chemicals in the same process
- Approximately half of the chemicals involved in the 167 incidents are <u>not</u> currently covered by PSM or RMP.



# The problem is not reactive chemicals, it's reactive chemistry.